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Abstract

Human activities have greatly influenced the natural nitrogen cycle, causing dramatic deg-

radation of ecosystem function. Net anthropogenic nitrogen input (NANI) is an important

factor contributing to the impact of human activities on the regional nitrogen cycle. Here,

we analyzed the temporal and spatial variation of NANI in the Pearl River Basin of China

between 1986 to 2015, and found that the total amount of NANI significantly increased

from 3,362.25 kg N km-2 yr-1 to 8,071.15 kg N km-2 yr-1. Application of nitrogen fertilizers

was the largest component of NANI in the Basin, accounting for 55.53% in the total NANI,

followed by food/feed net nitrogen input (21.26%), atmospheric nitrogen deposition

(12.95%), and crop nitrogen fixation (10.26%). Over the last three decades, nitrogen

inputs from atmospheric nitrogen deposition have become the second largest source of

NANI due to rapid industrialization and urbanization in the region. Regression analysis

showed that the rapid growth of both GDP and population density were the main contribu-

tors to the increase of NANI. In addition, the increase in the number of red tides in the

Pearl River Estuary was strongly correlated with NANI discharge (R2 = 0.90, p<0.01), sug-

gesting the NANI’s eutrophication effect. In total, this study provides a quantitative under-

standing of the temporal and spatial variations of NANI in the Pearl River Basin as well as

the effects of NANI on estuarine waters, and offered key information for developing an

integrated strategy for watershed nitrogen management.

1 Introduction

Nitrogen (N) is one of the most abundant elements in nature, controlling the evolutionary pro-

cesses and biodiversity of ecosystems [1–3]. With the increasing intensity of human activities,

N concentrations and flux in Basins increased steadly, becoming one of the main factors in

the degradation of river ecosystems as well as the eutrophication of water bodies such as lake

banks, estuaries, and coasts [4–8]. Previous studies showed that a substantial amount of

anthropogenic N was transported to estuarine and coastal waters via river flow[8]. In order to
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controling watershed N pollution, it should be important to illuminate the input flux of

sources of anthropogenic N and the effects on N export[9–14]. As the most populous develop-

ing country in the world, China has achieved a great economic development. At same time,

the problems of population expansion and resource shortage became more and more promi-

nent. Thus, rapid development had strongly negative impacts on the environment. In particu-

lar, more than 80% of waterbodies in China are highly eutrophic due to large amounts of N

input [15–17]. The input of human N sources in the Yangtze River, Yellow River, and Pearl

River have exceeded the natural N fixation[18, 19]. According to the China’s Bulletin of Envi-

ronmental Quality of Coastal Waters in 2016, the pollution of surface waters was serious.

Among the 1940 sections of national water quality monitoring, Grade I-II quality waters (the

lower the grade, the better the water quality) only accounted for 39.9%, while 27.9% waters

reached Grade-III quality standards and 32.3% of waters were belonged to Grade IV, V, and

worse than Grade V [20].

In particular, the Pearl River Basin is one of most contaminative regions in China, with

inorganic N and active phosphate as the most serious pollutants [20]. An excess of N caused by

human activities has a negative impact on environmental health and sustainability of coastal

waters [7, 21, 22]. Therefore, it is very important to understand and characterize the temporal

and spatial variations of N in the Pearl River Basin and their effects on estuarine waters.

Previous studies have shown that net anthropogenic N inputs (NANI) are an effective

index to quantify the combined effects of N inputs from human activities [23]. NANI is widely

used to estimate the N input at both watershed and regional scales. Several regional NANIs

have been estimated across the world, including the western and northeastern U.S. [24–26],

Europe [27], China [28, 29] and India [30]. The typical NANI model consists of four compo-

nents: N fertilizer application, food/feed net N input, atmospheric N deposition, and crop N

fixation [23]. Using this model, several studies have calculated the NANI input into different

Basins. To determine the effective impact of N input estimates on the predicting of riverine N

export, nine separate NANI models used for each of 18 Lake Michigan catchments and dem-

onstrated that different budgeting models can significantly influence the estimation of N input

[31]. Gao et al. [3] estimated the socioeconomic indexes of sub-basins by an area-weighted

method and land use-weighted method, and then obtained the NANI for the Dianchi Lake in

China from 2000 to 2010 and the two different weighted methods led to about a 15% differ-

ence. The study about the temporal and spatial variations of NANI in the Dongting Lake Basin

of China suggested that the government should focus on controlling the input of upstream pol-

lutants and the loss of non-point source nutrients from the land [17]. Chen et al. [14] studied

the variation of NANI in the Yangtze River Basin in China from 1980 to 2012 and its regres-

sion relationship with dissolved inorganic N (DIN), indicating that NANI in the southern part

of the Basin has more than tripled over the past 30 years. They also found that NANI contrib-

uted to 37~66% of the river DIN export in the Yangtze River Basin.

In the last 30 years, with globalization of China, the Pearl River Basin has played an ever-

increasing role in the development of the regional economy. According to 2015 statistics the

Pearl River Basin, despite accounting for just 5 percent of the total Chinese territory and 8.22

percent of its population, generated more than 100 billion dollar accounting for 11.39 percent

of the national Gross Domestic Product (GDP). Furthermore, it is the primary water supply

for human consumption, agriculture, hydropower, and shipping in southern China. However,

the Pearl River Estuary has been eutrophic since the 1970s, resulting in the blooms of harmful

algae as well as environmental and economic losses [32–35]. However, there are few studies on

the evaluation of N sources from human activities in the Pearl River Basin. A recent study esti-

mated DIN and dissolved inorganic phosphorus (DIP) between 1970~2050 using the Global

NEWS-2 model, and pointed out that it was difficult to identify the key areas of N source input

NANI in Pearl River Basin
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by estimating NANI from provincial scale data [36]. In order to improve the management of

N in the watershed, it is necessary to estimate NANI at the level of the Pearl River Basin, as

well as investigate the N source emission patterns of sub-basins.

In this study, we focused on the temporal and spatial variation of NANI into the Pearl River

Basin of China from 1986 to 2015. In first, we analyzed the temporal and spatial variation of

NANI across the entire Basin and calculated the contribution of different N input sources.

Then, we analyzed the relationships between NANI and population or GDP in order to reveal-

ing the impact of economic development, as well as identifying the main NANI sources.

Together, this study would give us a deep insight into the temporal and spatial evolution of

NANI and provide suggestions for controlling N pollution in the Pearl River Basin.

2 Materials and methods

2.1 Study area

The Pearl River, located in the south China between 21˚310~26˚490N and 102˚140~115˚530E, is

the second largest river and the third longest river in China. It originates from Wumen Moun-

tain in the Yunnan-Guizhou Plateau and flows across seven provinces in central and western

China, flowing into the South China Sea from eight downstream inlets (Fig 1). The total area

of the Pearl River Basin is about 443,518 square kilometers (km2). According to the watershed

characteristics, the whole watershed can be divided into 11 sub-basins through the ArcGIS

platform [37], namely Nanpanjiang (NPJ), Beipanjiang (BPJ), Youjiang (YJ), Zuoyujiang

(ZYJ), Hongshuihe (HSH), Liujiang (LJ), Guihe River (GHJ), Qianxunxi River (QXXJ), Bei-

jiang River (BJ), Dongjiang River (DJ), and Pearl River Delta Basin (ZSJ) (Fig 1). The areas of

these sub-basins range from about 17,335.20 km2 (ZSJ) to 58,776.42 km2 (NPJ). The map was

created with ArcGIS 10.2, URL: http://www.esri.com/software/arcgis/arcgis-for-desktop. The

Pear River Basin and its sub-basins were displayed according to Yan et al. 2014[37]. Other data

of the map were obtained at the following web site: http://www.diva-gis.org/Data.

Fig 1. Geographical map of the Pearl River Basin and its sub-basins. NPJ -Nanpanjiang, BPJ-Beipanjiang, YJ -Youjiang,

ZYJ-Zuoyujiang, HSH-Hongshuihe, LJ-Liujiang, GHJ-Guihe River, QXXJ-Qianxunxi River, BJ-Beijiang River, DJ -Dongjiang

River, ZSJ-Pearl River Delta Basin. The map was created with ArcGIS 10.2, URL: http://www.esri.com/software/arcgis/arcgis-for-

desktop. The Pear River Basin and its sub-basins were displayed according to previous study [37]. Other data of the map were

obtained at the following web site: http://www.diva-gis.org/Data.

https://doi.org/10.1371/journal.pone.0228683.g001

NANI in Pearl River Basin

PLOS ONE | https://doi.org/10.1371/journal.pone.0228683 February 10, 2020 3 / 14

http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.diva-gis.org/Data
http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.diva-gis.org/Data
https://doi.org/10.1371/journal.pone.0228683.g001
https://doi.org/10.1371/journal.pone.0228683


www.manaraa.com

2.2 Data source

The Pearl River flows across seven provinces: Yunnan Province, Guizhou Province, Jiangxi

Province, Guangxi Province, Hunan Province, Fujian Province, and Guangdong Province. In

this study, NANI was estimated on 48 prefecture-level administrative units which covers 11

sub-basins[38, 39]. Data used to calculate NANI included four categories: social data (urban

population, rural population), economic data (Gross Domestic Product-GDP, Gross Output

Value of Agriculture -GOVA, and Gross Output Value of Industrial-GOVI. et al.), agricultural

data (N fertilizer application, compound fertilizer application, agricultural product planting

area and yield, and poultry stock) and energy consumption data (coal, crude oil, gasoline, die-

sel, fuel oil, and natural gas), a total of 36 index parameters. The above data was collected from

Provincial Statistical Yearbooks, Provincial Statistical Yearbooks on Agriculture, Regional Sta-

tistical Yearbooks, and the China Statistics Yearbook for Regional Economy from 1986 to 2015

[40]. The socioeconomic data associated with these four components of the NANI calculation

model in each sub-basin were obtained by combining that of the intersection of sub-basins

and the related country-level units in terms of the area-weighted method on the ArcGIS

platform.

Because of the changes of statistical indexes, some socioeconomic data (including energy

consumption, fertilizer application, agricultural product planting area and yield, and poultry

stock) at regional level in the early years were missing. We restored some missing data with

statistical models and algorithms such as time series, regression models, and Expectation

Maximization.

2.3 Estimation of four components of NANI

In general, NANI is composed mainly of four components: N fertilizer application, food/feed

net N input, atmospheric N deposition, and agricultural N fixation [23, 41]. The estimating

model of NANI is as follows,

NANI ¼ Nfert þ Nfood&feed þ Natmos þ Ncrop ð2:1Þ

Where NANI represents the Net Anthropogenic N Input; Nfert presents the N fertilizer appli-

cation; Nfood&feed represents the net food/feed N import; Natmos represents the atmospheric N

deposition; and Ncrop represents the N fixation of crops. The unit for these four components is

expressed in kilograms of N per square kilometer per year (kg N km-2 yr-1).

In order to calculate NANI, four N components were analyzed separately. However, they

were different kinds of the statistical data adaptive to different sun-basin. In particular, the

components of Ncrop will depend on the kinds of planting crop in the region. The N input

from fertilizers (Nfert) was estimated based on the application amounts of N fertilizers and the

N content in the compound fertilizers. The data of fertilizer N can be obtained directly from

Regional Statistical Yearbooks, and the amount of compound fertilizer can be calculated with

N fertilizers by multiplying a factor rn (rn = 35.71%) [42].

The Nfood&feed was defined as the sum of human food and livestock feed N consumption

[43]. Atmospheric N deposition is mainly composed of wet deposition and dry deposition; the

ratio of dry to wet deposition of atmospheric N is about 3:7, therefore dry deposition can be

obtained by calculating the wet deposition of atmospheric N [28, 44–46]. Crop N fixation

(Ncrop) was obtained by multiplying the crop planting area and the N fixation rate per unit of

crop planting area. According to previous literature, the N fixation rate of soybean is 9600 kg

N km-2 yr-1, and peanuts is 8000 kg N km-2 yr-1, and rice is 3000 kg N km-2 yr-1, while other N

fixation rates of dry land and gardens were regard as 1500 kg N km-2 yr-1 [14, 24].

NANI in Pearl River Basin
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The NANI in the entire Pearl River Basin was obtained by the area-weighted average of the

NANI of each sub-basin, as follows:

NANIt;entire ¼
X11

i¼1
ðareai � NANIt;iÞ=areaentire; t ¼ 1; 2; � � � ; 30: ð2:2Þ

NANIaverage:i ¼
1

30

X30

t¼1
NANIt;i: ð2:3Þ

Here, NANIt,entire represents the NANI of the entire Pearl River Basin in the year t, areai
denotes the area of the sub-basin i for i = 1, . . ., 11; NANIt,i denotes the NANI of sub-basin i in

year t; areaentire denotes the total area of the Pearl River Basin, and NANIaverage.i denotes the

mean value of the NANI of sub-basin i across the thirty years examined in this study.

2.4 Pearson correlation test for the linear trend

We use Pearson correlation coefficient to measure the linear correlation between series NANIt,
entire and time series t, which is defined by

r ¼
P30

t¼1
ðNANIt;entire � NANIentireÞðt � �tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP30

t¼1
ðNANIt;entire � NANIentireÞ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P30

t¼1
ðt � �tÞ2

q

Where NANIentire ¼ 1

30

P30

t¼1
NANIt;entire and �t ¼ 1

30

P30

t¼1
t.

When the correlation coefficient r is positive, it shows that NANIt,entire has a linear increase

trend; in contrast, when r is negative, it shows that NANIt,entire has a linear decrease trend.

When using Pearson correlation test, if r value is larger than some critical value, the hypothesis

r = 0 will be rejected, that is, it asserts that there exists linear trend; otherwise, it asserts that

there does not exist linear trend.

3 Results and discussion

3.1 Spatial and temporal variations of NANI in Pearl River Basin

To examine the spatial differences in NANI in the Pearl River Basin, the multiannual (1986–

2015) average NANI in each sub-basin was qualified. Figs 2 and 3 show the significant spatial

distribution of NANI in 11 sub-basins. The greatest NANI was observed in the ZSJ sub-basin

(16998.15 kg N km-2 yr-1), followed by the QXXJ (7416.16 kg km-2 yr-1) and BPJ (7410.04 kg

km-2 yr-1) sub-basins, while the lowest NANI was recorded in the YJ sub-basin (3477.28 kg N

km-2 yr-1). The spatial differences in the NANI distribution across the Pearl River Basin were

related to the imbalance in the population distribution and economic development among the

sub-basins (S1 and S2 Tables). In special cases, a significantly high NANI value in ZSJ was due

to the dense population and industrial development in the joint region of the Xi, Dong and Bei

rivers. NANI in Pearl River Basin has similar spatial pattern to that seen in the Yangtze River

Basin [14], but it is relatively higher compared to other Basins in the world (western U.S.

watersheds [26], northeastern U.S. watersheds [24, 25], Baltic Sea watersheds [27] and Indian

watersheds [30]).

At same time, remarkable temporal shifts of NANI were observed in the Pearl River Basin

(Fig 4 and S3 Fig), similar to the shift found in the Yangtze River basin[14]. The total NANI

in the Basin gradually increased from 3,362.25 kg N km-2 in 1986 to 8,071.15 kg N km-2 in

2015, lower than the average of NANI (3388 kg N km-2 in 1990, 5013 kg N km-2 in 2009) in

the same period in mainland China [29]. From 1986 to 2013, the total NANI increased at

basically same rate of approximate 5% each year; after that, it showed a relatively slow increase

NANI in Pearl River Basin
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during 2013–2015 (~1%). The increase of the total NANI in NPJ, BPJ, ZYJ and QXXJ was

most significant among the sub-basins, which was mainly attributed to the rapid increase of

fertilizer application in these regions. The N load in the Pearl River Basin has increased by

about 2.5 times during the last three decades and the highest growth rate occurred in 1988

(13.1%) and the lowest growth rate occurred in 1993 (-2.1%). The temporal variation of each

NANI component is shown in S1 Fig, indicating an increasing trend of fertilizer N applica-

tion, atmospheric N deposition, and net food and feed N import during 1986 to 2015

Fig 2. The temporal and spatial variations of NANI (kg N km-2 yr-1) in 11 sub-basins of the Pearl River Basin. These maps

were created with ArcGIS 10.2, URL: http://www.esri.com/software/arcgis/arcgis-for-desktop. The Pear River Basin and its sub-

basins were displayed according to previous study [37]. Other data of the map were obtained at the following web site: http://

www.diva-gis.org/Data.

https://doi.org/10.1371/journal.pone.0228683.g002

Fig 3. Box plot of multiannual average NANI in 11 sub-basins in the Pearl River Basin (1986–2015).

https://doi.org/10.1371/journal.pone.0228683.g003
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(Pearson correlation test, R2 = 0.990, 0.953, 0.831, p<0.05), although there was a slight fluctu-

ation in some years. On the contrary, Crop N fixation did not show a significant upward even

downward trend from 1986 to 2015 (Pearson correlation test, R2 = -0.056, p = 0.778).

3.2 Contributions of different N sources to NANI in Pearl River Basin

The contributions of different sources to NANI in the Yangtze River Basin were quantified

(Fig 4 and S2 Table). N fertilizer application was the main input source of NANI in the Pearl

River Basin, increasing from 1,741.69 kg N km-2 in 1986 to 4,426.17 kg N km-2 in 2015, con-

tributing 55.53% N to the total NANI. The largest input of fertilizer N was observed in the ZSJ

sub-basin, though it showed a decreasing trend from 9750.85 kg N km-2 in 1986 to 6026.86 kg

N km-2 in 2015, reflecting a decline of agricultural activities in the region over this period.

Overall, N fertilizer use appeared to gradually increase over the period between 1986 and 2015,

suggesting a continuous expansion of agricultural practices in most sub-basins. Food and feed

net N import was the second largest source of NANI, and though its overall contribution

dropped from 26.24% in 1988 to 16.55% in 2015 (mean = 21.26%), in the ZSJ, NPJ, and QXXJ

sub-basins its contribution significantly increased during this period. Atmospheric N deposi-

tion contributed on average to 12.95% of the total NANI. Amongst the four components of

NANI, atmospheric N deposition had the largest increase rate over time, from 252.68 kg N

km-2 in 1986 to 1,760.54 kg N km-2 in 2015 with a growth rate of 596.75%. Its contribution to

NANI grew significantly from 7.4% in 1986 to 21.51% in 2015, when it became the second

largest source of N input into the Pearl River Basin. Crop N fixation had the lowest contribu-

tion to the total NANI, with a mean value of 10.26% and decreased over time from 14.23% in

1986 to 7.07% in 2015, especially in the ZSJ sub-basin; this suggests the total amount of crops

decreased during this period.

Fertilizer N application accounted for more than 50% of the total amount of NANI, indicat-

ing that N fertilizer is a major contributing factor, while the similar results could be found in

the previous studies [3, 14, 19, 30, 41, 47, 48]. The NANI from land sources into the Pearl

River Basin during this period was 44.2 million (hm2), and the rice planting area in this region

Fig 4. Total NANI and its four components in the Pearl River Basin from 1986 to 2015. The error bar denotes the 95%

confidence interval of N inputs.

https://doi.org/10.1371/journal.pone.0228683.g004
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accounted for one fifth of the total planting area in China (China Statistical Yearbook, 2015)

[40]. The input of fertilizer N in the rice planting system was relatively larger, and the loss was

also relatively high [49, 50]. Agriculture also plays an important role in the Basin economy.

The per capita cultivated area in the Pearl River Basin in 2015 was 0.062 (hm2), which was

approximately 2/3 of the average in China (China Statistical Yearbook, 2015) [40]. Because of

the high population (0.113 billion) in the Pearl River Basin, the area used for agriculture is rela-

tive large, and due to low efficiency fertilization practices, a large amount chemical fertilizer

was lost from the farmland, then discharged into river water, and entered into estuarine and

coastal waters at last. Over 1986 and 2015, the amount of fertilizer N was tripled from 1,741.69

kg N km-2 to 4,426.17 kg N km-2. The sub-basin with the highest average N fertilizer applica-

tion was the Pearl River Delta, ranging from 5,137.97 kg N km-2 to 16,180.96 kg N km-2, while

the sub-basin with the lowest average was the Youjiang River Basin, at 770.67 kg N km-2 to

3,104.04 kg N km-2. In the other Basins, previous studies have also shown that fertilizer N

application was the most important source of N pollution in water bodies [41, 51–54].

3.3 The impact of GDP and population density on NANI

Several studies showed that human activities including industrial N fixation, food trade, energy

consumption, and diet choice were significant drivers of N alteration in various scales [55–57].

The socioeconomic factors are often referred to as population density, gross domestic product

and industrial structure and so on. According to the results of [13] and [58], population den-

sity plays a much more significant role for the changing of NANI compared to gross domestic

product (GDP).

S3 Table describes the main socio-economic features (average values across 1986–2015) in

these 11 sub-basins, including area, population density, cultivated land area, gross domestic

product, gross output of agriculture, and total grain output. Based on the main socio-economic

data used in calculating NANI, the relationships between NANI and GDP, NANI and popula-

tion density were analyzed. Fig 5 showed that GDP and population density were significantly

linearly related to NANI. The slope of the linear regression between NANI and population

density was 22, indicating that NANI will increase an average of 22 units with a one unit

increase in population density. This result is similar to the result in previous studies in the

Fig 5. Correlations between NANI and regional GDP and population density over the 1990–2015 period.

https://doi.org/10.1371/journal.pone.0228683.g005
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Lake Taihu, Lake Dianchi and Lake Chaohu Basins [58]. The value of R2 of the linear regres-

sion between NANI and GDP was 0.768, indicating that approximately 76.8% of the total vari-

ation of NANI could be explained to the average. This is significantly higher than that reported

in the previous study with an R2 of 0.31 in the Lake Taihu, Lake Dianchi and Lake Chaohu

Basins[58], Therefore, population density and GDP should be important factors impacting the

spatial variation of NANI in the area. Different distribution patterns of NANI across 11 sub-

basins were resulted partly from the imbalanced population density and the development of

industry and agriculture in these regions.

3.4 Impacts of NANI on red tide occurrence

In recent decades, the occurrence of red tides has become increasingly frequent in the Pearl

River Estuary and adjacent coastal areas [42, 59–61]. There were a total of 305 red tide events

recorded in Guangdong coasts from 1986 to 2015. Among them, 29 times were in the western

coast of Guangdong, 42 times were in the eastern coast, 53 times were in Daya Bay, 107 times

were in Daopeng Bay, and 74 times were in Pearl River Estuary [61]. The annual frequency of

red tides was generally less than 10 in the area before the 1980s, but there has been a significant

increase of the frequency since the 1990s (18 times in 1990, 22 times in 1991, and 7 times in

1998). However, the annual frequency of red tides began to drop after the 2000s, remaining

between 6 and 16 time per year except in 2003. The relationship between the NANI in the

Pearl River Basin and the frequency of red tides in the Pearl River Estuary and the adjacent

coast was shown in Fig 6. From 1986 to 1992, the frequency of red tides increased from 5 times

per year to 15 times per year with the increase of NANI, with highest increase rate during the

examined period. In the second period of 1993–2012, NANI had a poor linear correlation with

the red tides (R2 = 0.206, p = 0.044), and the frequency of red tide had a significantly low

increase rate. In the third period from 2013–2015, there was a slightly decrease in the fre-

quency of red tide. In total, this analysis showed that NANI could promote the occurrences of

red tide. When the NANI shifted from 1000 kg N km-2 yr-1 to 5000 kg N km-2 yr-1, the fre-

quency of red tide increase most rapidly, suggesting N was relatively lack in the estuarine and

coastal ecosystem. However, the N limit became weak with the increase of NANI over 5000 kg

N km-2 yr-1, leading to the decrease of frequency of red tide in the second time period. When

the NANI was up to 8000 kg N km-2 yr-1, N should be not a limiting factor for the occurrence

Fig 6. Correlation between NANI and the number of red tides occurring per year in Guangdong coasts between 1986–

2015.

https://doi.org/10.1371/journal.pone.0228683.g006
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of red tide. Together, this showed that it should be very important to control NANI in the

Pearl River Basin to reduce the occurrence of red tide and protect the environmental health of

the estuarine and coastal ecosystem. However, it will take a long time to reduce N loading sub-

stantially in China. For this purpose, some corresponding measures should be taken, for exam-

ple strengthening the monitoring and forecasting of water quality in Pearl River Basin and the

coastal, and adjusting the energy structure and so on.

4 Conclusion

The distribution of NANI in the Pearl River Basin has remarkable temporal and spatial varia-

tions. Over the past 30 years, NANI in the Pearl River Basin has increased with a relatively con-

stant speed from the main four sources. N fertilizer application contributed the most to NANI

input, followed by food/feed net N input, atmospheric N deposition, and crop N fixation. Over

the last decades, atmospheric N deposition has significantly increased the second largest source

of NANI, reflecting the rapid industrialization and urbanization in this region. Moreover, the

increase of NANI in the Pearl River Basin was also strongly related to the increase in popula-

tion and GDP. Statistical analysis showed the frequency of red tide in the Pearl River Estuary

was promoted by NANI discharge (R2 = 0.90, p< 0.01). In total, this work provides a quantita-

tive understanding of the temporal and spatial variations of NANI in the Pearl River Basin,

which should be have significance for protecting the estuarine and coastal environment by

reducing the input of NANI.

Supporting information

S1 Table. The proportion (%) of NANI input from different source in Pearl River Basin

over 1986–2015 period. This map was created with ArcGIS 10.2, URL: http://www.esri.com/

software/arcgis/arcgis-for-desktop. The Pear River Basin and its sub-basins were displayed

according to previous study [37]. Other data of the map were obtained at the following web

site: http://www.diva-gis.org/Data.

(DOCX)

S2 Table. Analysis of variance (ANOVA) for the NANI components in the 11 sub-basins of

the Pearl River Basin. Theses maps were created with ArcGIS 10.2, URL: http://www.esri.

com/software/arcgis/arcgis-for-desktop. The Pear River Basin and its sub-basins were dis-

played according to previous study [37]. Other data of the map were obtained at the following

web site: http://www.diva-gis.org/Data.

(DOCX)

S3 Table. Areas and main socio-economic parameters (average values over 1986–2015) in

11 sub-basins of the Pearl River Basin.

(DOCX)

S1 Fig. Distribution of the four major net anthropogenic N inputs components between

1986 and 2015.

(DOCX)

S2 Fig. Distribution of the four major net anthropogenic N inputs components in 11 sub-

basins in the Pearl River Basin during different period. 1990, 1995, 2000, 2005, 2010 and

2015 show the stage of 1986–1990, 1991–1995, 1996–2000, 2001–2005, 2006–2010 and 2011–

2015 respectively.

(DOCX)

NANI in Pearl River Basin

PLOS ONE | https://doi.org/10.1371/journal.pone.0228683 February 10, 2020 10 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0228683.s001
http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.diva-gis.org/Data
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0228683.s002
http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.diva-gis.org/Data
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0228683.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0228683.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0228683.s005
https://doi.org/10.1371/journal.pone.0228683


www.manaraa.com

S3 Fig. The temporal change of NANI in the Pearl River basin in three different sequential

stages.

(DOCX)

S1 Dataset. The data relevant to the analysis for NANI over 1986–2015 period.

(XLSX)

S2 Dataset. The data relevant to the analysis for population density, GDP and red tide.

(XLSX)

Acknowledgments

We thank Dr. Xianbiao Lin help to draw the geographic picture.

Author Contributions

Conceptualization: Yiguo Hong.

Data curation: Xia Cui, Caizhu Huang, Jiapeng Wu.

Formal analysis: Xia Cui, Caizhu Huang, Jiapeng Wu.

Funding acquisition: Yiguo Hong.

Project administration: Xia Cui.

Writing – original draft: Xia Cui.

Writing – review & editing: Xiaohan Liu, Yiguo Hong.

References
1. Vitousek PM, Howarth RW. Nitrogen limitation on land and in the sea: How can it occur? Biogeochem-

istry. 1991; 13(2):87–115. https://doi.org/10.1007/BF00002772

2. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, et al. Transformation of the

Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science. 2008; 320(5878):889–92.

https://doi.org/10.1126/science.1136674 PMID: 18487183

3. Gao W, Howarth R, Hong B, Swaney D, Guo H. Estimating net anthropogenic nitrogen inputs (NANI) in

the Lake Dianchi Basin of China. Biogeosciences. 2014; 11.

4. Diaz RJ, Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science.

2008; 321(5891):926–9. Epub 2008/08/16. https://doi.org/10.1126/science.1156401 PMID: 18703733

5. Canfield DE, Glazer AN, Falkowski PG. The Evolution and Future of Earth’s Nitrogen Cycle. Science.

2010; 330(6001):192–6. https://doi.org/10.1126/science.1186120 PMID: 20929768

6. Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S, et al. Coastal eutrophi-

cation as a driver of salt marsh loss. Nature. 2012; 490(7420):388–92. https://doi.org/10.1038/

nature11533 PMID: 23075989

7. Gu B, Ju X, Chang J, Ge Y, Vitousek PM. Integrated reactive nitrogen budgets and future trends in

China. Proc Natl Acad Sci USA. 2015; 112(28):8792–7. https://doi.org/10.1073/pnas.1510211112

PMID: 26124118.

8. Seitzinger SP, Mayorga E, Bouwman AF, Kroeze C, Beusen AHW, Billen G, et al. Global river nutrient

export: A scenario analysis of past and future trends. Global Biogeochemical Cycles. 2010; 24

(4):2621–8. https://doi.org/10.1029/2009gb003587

9. Gruber N, Galloway JN. An Earth-system perspective of the global nitrogen cycle. Nature. 2008; 451

(7176):293. https://doi.org/10.1038/nature06592 PMID: 18202647

10. Swaney DP, Hong B, Ti CP, Howarth RW, Humborg C. Net anthropogenic nitrogen inputs to water-

sheds and riverine N export to coastal waters: a brief overview. Current Opinion in Environmental Sus-

tainability. 2012; 4(2):203–11.

11. Hong B, Swaney DP, Howarth RW. Estimating net anthropogenic nitrogen inputs to US watersheds:

comparison of methodologies. Environmental science & technology. 2013; 47(10):5199–207.

NANI in Pearl River Basin

PLOS ONE | https://doi.org/10.1371/journal.pone.0228683 February 10, 2020 11 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0228683.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0228683.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0228683.s008
https://doi.org/10.1007/BF00002772
https://doi.org/10.1126/science.1136674
http://www.ncbi.nlm.nih.gov/pubmed/18487183
https://doi.org/10.1126/science.1156401
http://www.ncbi.nlm.nih.gov/pubmed/18703733
https://doi.org/10.1126/science.1186120
http://www.ncbi.nlm.nih.gov/pubmed/20929768
https://doi.org/10.1038/nature11533
https://doi.org/10.1038/nature11533
http://www.ncbi.nlm.nih.gov/pubmed/23075989
https://doi.org/10.1073/pnas.1510211112
http://www.ncbi.nlm.nih.gov/pubmed/26124118
https://doi.org/10.1029/2009gb003587
https://doi.org/10.1038/nature06592
http://www.ncbi.nlm.nih.gov/pubmed/18202647
https://doi.org/10.1371/journal.pone.0228683


www.manaraa.com

12. Chen DJ, Huang H, Hu MP, Dahlgren RA. Influence of lag effect, soil release, and climate change on

watershed anthropogenic nitrogen inputs and riverine export dynamics. Environmental science & tech-

nology. 2014; 48(10):5683–90.

13. Han YG, Fan YT, Yang PL, Wang XX, Wang YJ, Tian JX, et al. Net anthropogenic nitrogen inputs

(NANI) index application in Mainland China. Geoderma. 2014; 213:87–94.

14. Chen F, Hou L, Liu M, Zheng Y, Yin G, Lin X, et al. Net anthropogenic nitrogen inputs (NANI) into the

Yangtze River basin and the relationship with riverine nitrogen export. Journal of Geophysical

Research: Biogeosciences. 2016; 121(2):451–65. https://doi.org/10.1002/2015JG003186

15. Novotny V, Wang X, Englande AJ, Bedoya D, Promakasikorn L, Tirado R. Comparative assessment of

pollution by the use of industrial agricultural fertilizers in four rapidly developing Asian countries. Envi-

ronment, Development and Sustainability. 2010; 12(4):491–509. https://doi.org/10.1007/s10668-009-

9207-2

16. Xu H, Paerl HW, Qin B, Zhu G, Gaoa G. Nitrogen and phosphorus inputs control phytoplankton growth

in eutrophic Lake Taihu, China. Limnology and Oceanography. 2010; 55(1):420–32. https://doi.org/10.

4319/lo.2010.55.1.0420

17. Tian Z, Zheng B, Wang L, Li L, Wang X, Li H, et al. Long term (1997–2014) spatial and temporal varia-

tions in nitrogen in Dongting Lake, China. PLoS One. 2017; 12(2):e0170993. Epub 2017/02/07. https://

doi.org/10.1371/journal.pone.0170993 PMID: 28166245.

18. Xing GX, Zhu ZL. Regional nitrogen budgets for China and its major watersheds. Biogeochemistry.

2002; 57/58(1):405–27.

19. Gao W, Guo H, Xikang H. Evaluating city-scale net anthropogenic nitrogen input (NANI) in Mainland

China. Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis.

2014; 50:951–9.

20. China MoEPo. China’s Bulletin of Environmental Quality of Coastal Waters. Beijing China: 2016.

21. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, et al. Human alteration of

the global nitrogen cycle: sources and consequences. Ecological Applications. 1997; 7(3):737–50.

https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2

22. Erisman JW, Galloway JN, Seitzinger S, Bleeker A, Dise NB, Petrescu AM, et al. Consequences of

human modification of the global nitrogen cycle. Philosophical transactions of the Royal Society of Lon-

don Series B, Biological sciences. 2013; 368(1621):20130116. Epub 2013/05/29. https://doi.org/10.

1098/rstb.2013.0116 PMID: 23713116.

23. Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, et al. Regional nitrogen budgets

and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences.

Biogeochemistry. 1996; 35(1):75–139. https://doi.org/10.1007/BF02179825

24. Boyer EW, Goodale CL, Jaworski NA, Howarth RW. Anthropogenic nitrogen sources and relationships

to riverine nitrogen export in the northeastern U.S.A. Biogeochemistry. 2002; 57/58(1):137–69.

25. Howarth RW, Swaney DP, Boyer EW, Marino R, Jaworski N, Goodale C. The influence of climate on

average nitrogen export from large watersheds in the Northeastern United States. Biogeochemistry.

2006; 79(1/2):163–86.

26. Schaefer SC, Hollibaugh JT, Alber M. Watershed nitrogen input and riverine export on the west coast of

the US. Biogeochemistry. 2009; 93(3):219–33.

27. Hong B, Swaney DP, Mörth C-M, Smedberg E, Eriksson Hägg H, Humborg C, et al. Evaluating regional
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